486 research outputs found

    Infinite Synchronizing Words for Probabilistic Automata (Erratum)

    Full text link
    In [1], we introduced the weakly synchronizing languages for probabilistic automata. In this report, we show that the emptiness problem of weakly synchronizing languages for probabilistic automata is undecidable. This implies that the decidability result of [1-3] for the emptiness problem of weakly synchronizing language is incorrect.Comment: 5 pages, 3 figure

    Synthesis of Communicating Controllers for Distributed Systems

    Get PDF
    International audienceWe consider the control of distributed systems composed of subsystems communicating asynchronously; the aim is to build local controllers that restrict the behavior of a distributed system in order to satisfy a global state avoidance property. We model our distributed systems as communicating finite state machines with reliable unbounded FIFO queues between subsystems. Local controllers can only observe their proper local subsystems and do not observe the queues. To refine their control policy, they can use the FIFO queues to communicate by piggybacking extra information to the messages sent by the subsystems. We define synthesis algorithms allowing to compute the local controllers. We explain how we can ensure the termination of this control algorithm by using abstract interpretation techniques, to overapproximate queue contents by regular languages. An implementation of our algorithms provides an empirical evaluation of our method

    Symbolic Supervisory Control of Distributed Systems with Communications

    Get PDF
    We consider the control of distributed systems composed of subsystems communicating asynchronously; the aim is to build local controllers that restrict the behavior of a distributed system in order to satisfy a global state avoidance property. We model distributed systems as \emph{communicating finite state machines} with reliable unbounded FIFO queues between subsystems. Local controllers can only observe the behavior of their proper subsystem and do not see the queue contents. To refine their control policy, controllers can use the FIFO queues to communicate by piggy-backing extra information (some timestamps and their state estimates) to the messages sent by the subsystems. We provide an algorithm that computes, for each local subsystem (and thus for each controller), during the execution of the system, an estimate of the current global state of the distributed system. We then define a synthesis algorithm to compute local controllers. Our method relies on the computation of (co-)reachable states. Since the reachability problem is undecidable in our model, we use abstract interpretation techniques to obtain overapproximations of (co-)reachable states. An implementation of our algorithms provides an empirical evaluation of our method

    Discrete empirical interpolation for hyper-reduction of hydro-mechanical problems in groundwater flow through soil

    Get PDF
    This is the peer reviewed version of the following article: Nasika, C. [et al.]. Discrete empirical interpolation for hyper-reduction of hydro-mechanical problems in groundwater flow through soil. "International journal for numerical and analytical methods in geomechanics", 10 Abril 2023, vol. 47, núm. 5, p. 667-693, which has been published in final form at https://onlinelibrary.wiley.com/doi/10.1002/nag.3487. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions. This article may not be enhanced, enriched or otherwise transformed into a derivative work, without express permission from Wiley or by statutory rights under applicable legislation. Copyright notices must not be removed, obscured or modified. The article must be linked to Wiley’s version of record on Wiley Online Library and any embedding, framing or otherwise making available the article or pages thereof by third parties from platforms, services and websites other than Wiley Online Library must be prohibited.The recent surge in the availability of sensor data and computational resources has fostered the development of technologies for optimization, control, and monitoring of large infrastructures, integrating data and numerical modeling. The major bottleneck in this type of technologies is the model response time, since repetitive solutions are typically required. To reduce the computational time, reduced order models (ROMs) are used as surrogates for expensive finite element (FE) simulations enabling the use of complex models in this type of applications. In this work, ROMs are explored for the solution of the fully coupled hydro-mechanical system of equations that governs the water flow through partially saturated soil. The POD-based Reduced Basis Method and the Discrete Empirical Interpolation Method (DEIM), as well as its localized version (LDEIM), are examined in solving a parametrized problem simulating the mechanical loading of an embankment dam. Hydraulic and mechanical soil properties are considered as parameters. It is shown that the combination of these methods results in simulations that require 1/10 to 1/100 of the FE response time. Moreover, the method is shown to yield scaling efficiency gains with increasing problem size.Peer ReviewedPostprint (published version

    Stick-slip phenomena and Schallamach waves captured using reversible cohesive elements

    Full text link
    Reversibility is of paramount importance in the correct representation of surface peeling in various physical settings, ranging from motility in nature, to gripping devices in robotic applications, and even to sliding of tectonic plates. Modeling the detachment-reattachment sequence, known as stick-slip, imposes several challenges in a continuum framework. Here we exploit customized reversible cohesive elements in a hybrid finite element model that can handle occurrence of snap-through instabilities. The simulations capture various peeling phenomena that emerge in experimental observations, where layers are pulled from a flat, rigid substrate in the direction parallel to the surface. For long layers, periodicity in reattachment is shown to develop and is linked to the concept of Schallamach waves. Further, the connection between surface properties and stick-slip behavior is investigated: we find that stick-slip is linked to the propensity of the interface to localize deformation and damage. Beyond elucidating the various peeling behaviors and the detachment modes, the computational framework developed here provides a straightforward approach for investigation of complex delamination processes, which can guide development of future applications across different scales and in various settings

    A unified level set based methodology for fast generation of complex microstructural multi-phase RVEs

    Full text link
    peer reviewedIn the frame of the multi-scale computational analysis of complex materials, the generation of Representative Volume Elements (RVE) is often a crucial step. Various microstructure generation tools may be used, depending on the material to be considered, such as Discrete Element Methods (DEM), Random Sequential Addition (RSA) based methods for particulate media requiring important computation times; or Voronoï tessellation methods for polycrystalline materials. Besides being material specific, some of these methods may become unaffordable when considering complex microstructures, large inclusions numbers or high volume fractions. The present contribution presents a unified level set based methodology for complex, periodic (or not) and random RVE generations. The presented methodology allows RVE generation for particulate granular media, polycrystalline aggregates with large size distribution and arbitrary shapes, as well as for complex three-phase or poly-phase microstructures. A level set controlled Random Sequential Addition algorithm is used for particle distribution generation, allowing increasing the RSA algorithm efficiency, generating large and dense populations of arbitrary shaped inclusions with precise control on neighboring distances. Starting from this, several methods are presented to add specific realistic features to the generated RVEs. Modifications and densifications allow the distribution pattern to fit observed real samples or to present a specific spatial organization. The addition of one (or more) phase(s) obtained from the growth of the initial inclusions allows reproducing some typical microstructural patterns such as grain bridging in clayey soils, interfacial transition zones in concrete or hydrated gel in cement paste. The versatility of the proposed RVE generation method is illustrated by means of various examples, reproducing realistic microstructural arrangements of clayey soils, irregular masonry and polycrystalline aggregates with bimodal size distributions. © 2012 Elsevier B.V

    Guidelines for the reliable use of high throughput sequencing technologies to detect plant pathogens and pests.

    Get PDF
    High-throughput sequencing (HTS) technologies have the potential to become one of the most signi cant advances in molecular diagnostics. Their use by researchers to detect and characterize plant pathogens and pests has been growing steadily for more than a decade and they are now envisioned as a routine diagnostic test to be deployed by plant pest diagnostics laboratories. Nevertheless, HTS technologies and downstream bioinformatics analysis of the generated datasets represent a complex process including many steps whose reliability must be ensured. The aim of the present guidelines is to provide recommendations for researchers and diagnosticians aiming to reliably use HTS technologies to detect plant pathogens and pests. These guidelines are generic and do not depend on the sequencing technology or platform. They cover all the adoption processes of HTS technologies from test selection to test validation as well as their routine implementation. A special emphasis is given to key elements to be considered: undertaking a risk analysis, designing sample panels for validation, using proper controls, evaluating performance criteria, con rming and interpreting results. These guidelines cover any HTS test used for the detection and identi cation of any plant pest (viroid, virus, bacteria, phytoplasma, fungi and fungus-like protists, nematodes, arthropods, plants) from any type of matrix. Overall, their adoption by diagnosticians and researchers should greatly improve the reliability of pathogens and pest diagnostics and foster the use of HTS technologies in plant health

    Experimental characterisation of clay-sand mixtures treated with lime

    Full text link
    peer reviewedLime stabilisation is a process which chemically improves numerous characteristics of the soils, among which aspects, the mechanical properties increase are the most noticeable. This paper investigates the lime treatment of mixtures of sand and bentonite at different proportions. Three physical characteristics are measured at different curing times: the mechanical strength is deduced from unconfined compressive strength (UCS); the chemical reaction is evaluated based on the lime consumption (LC) and the electrical properties are obtained from electrical resistivity (ER). Results show that all three physical characteristics increase with curing time and that the optimal UCS appears at mixtures with low bentonite content (i.e. 10–15% bentonite). LC curves show that the kinetics of the lime reaction is also slower at these low bentonite contents. Finally, the ER curves show similar patterns for all mixtures and are closely related to the LC
    • …
    corecore